ASX Announcement

18 October 2023

This announcement has been authorised to be lodged with the ASX by the Board of Directors of PNX Metals Limited.

Level 1, 135 Fullarton Road Rose Park, SA 5067 Australia

Telephone +61 (0) 8 8364 3188 Facsimile +61 (0) 8 8364 4288

info@pnxmetals.com.au www.pnxmetals.com.au

RC drilling commences at the C6 gold prospect

- RC drilling commences to test fresh-rock below weathered gold-rich massive sulphide veins mapped in costeans
- New high-grade rock chip gold samples reported from multiple costeans at C6 prospect, including:
 - 2.5 m @ 11.8 g/t Au from 68.5 m Costean 4 lower north side
 - including 0.5 m @ 49.9 g/t Au from 70.0 m,
 - o 2.5 m @ 7.88 g/t Au from 68.5 m Costean 4 upper north side
 - including 0.5 m @ 32.6 g/t Au from 70.0 m, and
 - 0.5 m @ 2.84 g/t Au from 57.5 m, and 0.5 m @ 2.45 g/t Au from 69.0 m in Costean 1
- First assays received from reconnaissance aircore drilling, including:
 - o 2 m @ 3.38 g/t Au from surface in C6AC004A,
 - o 1 m @ 14.9 g/t Au from 2 m in C6AC008A, and
 - o 1 m @ 2.24 g/t Au from surface in C6AC010A
- >10 g/t high-grade gold in outcrop now traced over a 3 km N-S strike extent within multiple parallel zones
- Drone magnetic survey nearing completion with results to provide geological foundation for future exploration
- PNX Board on site to assess C6 gold exploration and Project activities

PNX Metals Limited (**ASX: PNX**) ("**PNX**" "the **Company**") is pleased to announce further positive gold results from the high-grade C6 gold prospect.

The C6 prospect is part of PNX's Burnside Northern Leases in the Pine Creek region of the NT, with the main high-grade zone located on its 100% owned EL31893, approximately 100 km south of Darwin and 35 km NNW of PNX's Fountain Head gold development project.

The Northern Leases host multiple kilometre-scale gold targets with the potential for economically significant gold mineralisation along the same structural corridor as Cosmo Howley (owned by Agnico Eagle Mines Ltd) and numerous other gold deposits (refer ASX release 13 February 2023).

Work conducted by PNX at C6 includes reconnaissance aircore drilling, drone magnetic surveys and previously reported surface rock-chip and costean (trench) sampling, (refer ASX release 29 August 2023) as well as reported

results in this announcement. There has been limited historic work at C6 and no RC drilling at the new high grade gold zones.

The C6 gold-rich surface gossan, from which multiple rock-chip samples exceeding 100 g/t gold were returned (refer ASX releases 31 May 2023 and 20 July 2023), is interpreted to be the weathered remnants of massive sulphide veins and will be tested in an RC drilling program which has now commenced.

Widespread surface samples greater than 10 g/t Au from limited surface outcrop has extended the mineralised zone over a 3 km strike; with numerous areas requiring further assessment and testing along the north-south geological corridor (Figure 1).

Multiple parallel trends have also been identified, including the C7 and Bartons/Brumby prospects where PNX has confirmed and extended historic high-grade gold results (refer ASX releases 13 February 2023 and 20 July 2023), and completed costeaning and aircore drilling with assays pending.

Managing Director's Comment

PNX Managing Director James Fox said: "Ongoing exploration activities within the Northern Leases continue to expand the surface mineralised footprint. High-grade gold in outcrop, assaying >10 g/t, has been traced over a 3 km N-S strike extent within multiple parallel zones. RC drilling has commenced and will test for primary mineralisation in bedrock and to identify zones of accumulation with potential for high-grade gold. A drone magnetic survey covering most of our Northern Leases is also nearing completion and will provide targeting assistance and a strong foundation for future exploration"

New C6 costean assays

Gold assays have been returned from the costeans at C6 (Figure 2 and Table 1), with best new intercepts of:

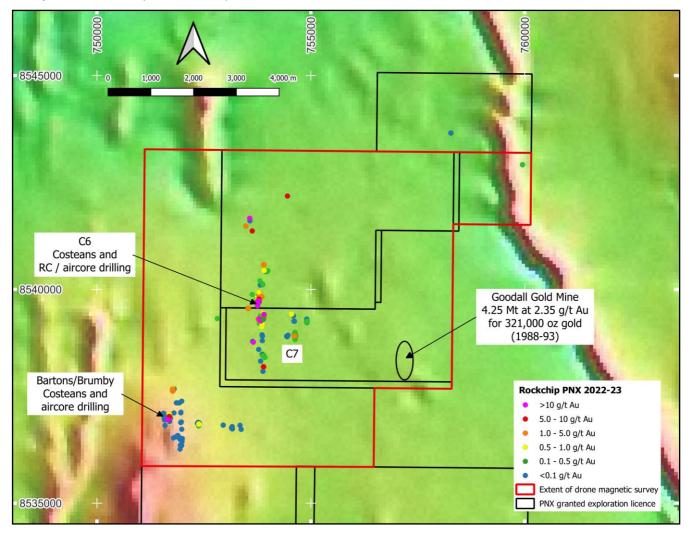
- 2.5 m @ 11.8 g/t Au from 68.5 m Costean 4 lower north side
 - o including 0.5 m @ 49.9 g/t Au from 70.0 m,
- 2.5 m @ 7.88 g/t Au from 68.5 m Costean 4 upper north side
 - o including 0.5 m @ 32.6 g/t Au from 70.0 m,
- 1.0 m @ 1.46 g/t Au from 70.0 m and 2.5 m @ 1.64 g/t Au from 75.0 m in Costean 2,
- 0.5 m @ 2.84 g/t Au from 57.5 m and 0.5 m @ 2.45 g/t Au from 69.0 m in Costean 1, and
- 0.5 m @ 2.29 g/t Au from 32.0 m in Costean 6.

Assays from the two additional costeans at the Brumby/Bartons prospects are pending.

New C6 aircore drilling assays

Aircore drilling has been used as a reconnaissance technique along the C6 corridor to better understand the geology and provide a cross-section of samples given the limited outcrop and shallow cover in the area. The first aircore drilling assays include 18 drill holes near the high-grade gossan at C6 and 34 reconnaissance holes across the C6 corridor (Figure 2).

Drill collars and all intercepts are shown in Table 2 with best intercepts reported of:


- 2 m @ 3.38 g/t Au from surface in C6AC004A,
- 1 m @ 1.57 g/t Au from 5 m in C6AC007B
- 1 m @ 14.9 g/t Au from 2 m in C6AC008A,
- 1 m @ 2.0 g/t Au from 22 m in C6AC009A, and
- 1 m @ 2.24 g/t Au from surface in C6AC010A.

Reconnaissance aircore drilling along the C6 and Brumby/Bartons corridors is ongoing with further results pending.

The recent assay results, along with new geological and geophysical data, provide important information leading to an updated geological model which forms the basis to target high-grade gold veins with the deeper RC drill holes at C6 and other nearby high-grade gold targets.

A drone magnetic survey is currently being flown over the majority of PNX's Northern Leases. Preliminary data indicates that the survey has delineated important geological features, such as folds and faults, and will provide a very useful base map for future exploration.

Figure 1: Location of gold prospects in the Company's Northern Lease including all PNX rock chip assays from 2022-23, location of the historic Goodall gold mine and extent of current drone magnetic survey. Background: regional Total Magnetic Intensity

Figure 2: Latest results - final assays for costeans, first assays for reconnaissance aircore drilling

Competent Person's Statement

The information in this report that relates to exploration data is based on information compiled by Dr Michael Green, who is a full-time employee and shareholder of PNX Metals Ltd. Dr Green is a Member of the Australian Institute of Geoscientists (AIG No: 4360) and has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the Australasian Code for the Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code). Dr Green consents to the inclusion of this information in the form and context in which it occurs.

For further information please visit the Company's website <u>www.pnxmetals.com.au</u>, or contact us directly:

James Fox Managing Director & CEO Telephone: +61 (0) 8 8364 3188

Table 1: Significant gold intercepts for costeans at C6 prospect (minus those previous reported for costeans 3 and 4; refer
ASX announcement 29 August 2023). Gold assays for each sample (i.e., initial routine assay plus lab repeats) have been
averaged. Those highlighted are above 10 g/t Au. Datum = GDA94, Zone 52.

Costean ID	Easting (m)	Northing (m)	RL (m)	Azimuth	Total Depth (m)	Location in Costean	From (m)	То (m)	Interval (m)	Au (g/t)								
00.0.14	750000	0500545	54	270	100		57.5	58.0	0.5	2.84								
C6_Cost1	753832	8539545	51	270	100	South Lower	69.0	69.5	0.5	2.45								
						South Lower	48.5	49.0	0.5	1.11								
						South Lower	70.0	70.5	0.5	0.98								
C6_Cost2	753827	8539619	51	270	100	South Lower	70.5	71.0	0.5	1.94								
						South Lower	75.0	76.0	1.0	3.39								
						South Lower	77.0	77.5	0.5	1.23								
							68.5	69.0	0.5	2.65								
				270	51 270			69.0	69.5	0.5	0.79							
							North Upper	North Upper	69.5	70.0	0.5	1.38						
						270	1 270			70.0	70.5	0.5	32.6					
C6-Cost4	753831	8539714	51						270	270	270 105	105		70.5	71.0	0.5	2.00	
																	68.5	69.0
												North Lower	69.0	69.5	0.5	5.06		
									North Lower	69.5	70.0	0.5	0.46					
							70.0	70.5	0.5	49.9								
CC Coat	752022	0520740	F 1	270	100	Courth Louiser	48.0	48.5	0.5	0.86								
C6_Cost5	753833	8539748	51	270	100	South Lower	52.5	53.0	0.5	0.62								
						South Lower	32.0	32.5	0.5	2.29								
						South Lower	43.5	44.0	0.5	1.38								
C6_Cost6	_Cost6 753819 8539799 51 270 100	100	South Lower	44.0	44.5	0.5	0.89											
						South Lower	88.5	89.0	0.5	1.75								
						North Lower	88.5	89.0	0.5	0.92								
BART-Cost1	751752	8536908	52	270	100	Results pending												
BART_Cost2	751751	8537024	55	270	100		Results p	ending										

Table 2: Significant gold intercepts for C6 aircore drilling; cut-off grade = 0.5 g/t Au. Note: Au assays for each sample (i.e., initial routine assay plus any lab repeats) have been averaged. These were then averaged across the intercept and weighted by their sample lengths to populate the 'Au g/t' field. Those highlighted are above 2.0 g/t gold. NSI = no significant intercept. Datum = GDA94, Zone 52.

Hole ID	Туре	Easting (m)	Northing (m)	RL (m)	Azimuth (mag)	Dip	Total Depth (m)	From (m)	To (m)	Interval (m)	Au (g/t)
CC A COO1 A	16	752 750	0 5 20 6 75	F 1	02 F	60	27	0.0	1.0	1.0	0.82
C6AC001A	AC	753,758	8,539,675	51	92.5	-60	27	18.0	19.0	1.0	0.64
C6AC001B	AC	753,752	8,539,675	51	92.5	-60	30	6.0	7.0	1.0	0.77
CUACOUID	70	755,752	8,559,075	51	52.5	-00	50	9.0	11.0	2.0	1.14
C6AC002A	AC	753,751	8,539,694	51	92.5	-60	27	3.0	4.0	1.0	0.84
			0,000,000	01	52.0			5.0	6.0	1.0	1.52
C6AC002B	AC	753,748	8,539,693	51	92.5	-60	27	6.0	8.0	2.0	1.45
C6AC003A	AC	753,760	8,539,681	51	272.5	-60	25			NSI	
C6AC003B	AC	753,763	8,539,681	51	272.5	-60	20			NSI	
C6AC004A	AC	753,762	8,539,697	51	272.5	-60	4	0.0	2.0	2.0	3.38
C6AC004B	AC	753,767	8,539,697	51	272.5	-60	19			NSI	
								0.0	1.0	1.0	0.74
C6AC005	AC	753,756	8,539,688	51	2.5	-60	27	3.0	4.0	1.0	0.90
								25.0	26.0	1.0	0.66
C6AC006	AC	753,756	8,539,681	51	182.5	-60	18	0.0	1.0	1.0	0.51
20/12000	<i>n</i> e	/33,/30	0,000,001	51	102.5	00	10	2.0	3.0	1.0	0.66
C6AC007A	AC	753,747	8,539,647	51	92.5	-60	33	NSI			
C6AC007B	AC	753,744	8,539,647	51	92.5	-60	36	5.0	6.0	1.0	1.57
00,000,0	1.0	, , , , , , , , , , , , , , , , , , , ,	0,000,017	51	52.5		50	22.0	23.0	1.0	0.52
C6AC008A	AC	753,757	8,539,636	51	272.5	-60	26	2.0	3.0	1.0	14.9
00,10000,1	1.0	, , , , , , , , , , , , , , , , , , , ,	0,000,000	51	272.0		20	18.0	19.0	1.0	0.92
C6AC008B	AC	753,761	8,539,636	51	272.5	-60	27			NSI	
C6AC009A	AC	753,763	8,53,9732	51	272.5	-60	26	22.0	23.0	1.0	2.00
C6AC009B	AC	753,768	8,539,732	51	272.5	-60	20			NSI	
C6AC010A	AC	753,756	8,539,726	51	92.5	-60	30	0.0	1.0	1.0	2.24
COACOIDA		/33,/30	8,555,720	51	52.5	-00	50	21.0	22.0	1.0	0.57
C6AC010B	AC	753,753	8,539,726	51	92.5	-60	30	3.0	5.0	2.0	1.11
COACOIOD	AC	/33,/33	0,555,720	51	52.5	00	50	23.0	24.0	1.0	1.07
C6AC011	AC	753,710	8,539,665	51	92.5	-60	7			NSI	
C6AC012	AC	753,690	8,539,665	51	92.5	-60	13			NSI	
C6AC013	AC	753,670	8,539,665	51	92.5	-60	8			NSI	
C6AC014	AC	753,650	8,539,665	51	92.5	-60	17			NSI	
C6AC015	AC	753,710	8,539,715	51	92.5	-60	8			NSI	
C6AC016	AC	753,690	8,539,715	51	92.5	-60	17			NSI	
C6AC017	AC	753,670	8,539,715	51	92.5	-60	3			NSI	

Hole ID	Туре	Easting (m)	Northing (m)	RL (m)	Azimuth (mag)	Dip	Total Depth (m)	From (m)	To (m)	Interval (m)	Au (g/t)
C6AC018	AC	753,650	8,539,715	51	92.5	-60	7			NSI	
C6AC019	AC	753,710	8,539,815	51	92.5	-60	11			NSI	
C6AC020	AC	753,690	8,539,815	51	92.5	-60	3			NSI	
C6AC021	AC	753,670	8,539,815	51	92.5	-60	3			NSI	
C6AC022	AC	753,650	8,539,815	51	92.5	-60	10			NSI	
C6AC023	AC	753,750	8,539,915	51	92.5	-60	10			NSI	
C6AC024	AC	753,730	8,539,915	51	92.5	-60	8			NSI	
C6AC025	AC	753,710	8,539,915	51	92.5	-60	15			NSI	
C6AC026	AC	753,690	8,539,915	51	92.5	-60	20			NSI	
C6AC027	AC	753,670	8,539,915	51	92.5	-60	5			NSI	
C6AC028	AC	753,650	8,539,915	51	92.5	-60	10	NSI			
C6AC029	AC	754,030	8,539,915	51	92.5	-60	24			NSI	
C6AC030	AC	754,010	8,539,915	51	92.5	-60	21			NSI	
C6AC031	AC	753,990	8,539,915	51	92.5	-60	28			NSI	
C6AC032	AC	753,970	8,539,915	51	92.5	-60	45			NSI	
C6AC033	AC	753,950	8,539,915	51	92.5	-60	39			NSI	
C6AC034	AC	753,930	8,539,915	51	92.5	-60	35			NSI	
C6AC035	AC	753,910	8,539,915	51	92.5	-60	26			NSI	
C6AC036	AC	753,890	8,539,915	51	92.5	-60	27			NSI	
C6AC037	AC	753,870	8,539,915	51	92.5	-60	22			NSI	
C6AC038	AC	753,850	8,539,915	51	92.5	-60	3			NSI	
C6AC039	AC	753,846	8,539,915	51	272.5	-60	6			NSI	
C6AC040	AC	754,030	8,540,115	51	92.5	-60	20			NSI	
C6AC041	AC	754,010	8,540,115	51	92.5	-60	29			NSI	
C6AC042	AC	753,990	8,540,115	51	92.5	-60	25	NSI			
C6AC043	AC	753,970	8,540,115	51	92.5	-60	20			NSI	
C6AC044	AC	753,950	8,540,115	51	92.5	-60	33			NSI	

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverized to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 Costean and aircore (AC) drill samples were collected by PNX staff and Northern Geological Consultants. Costeans were dug to about 2 m deep exposing at least 1 m of weathered bedrock. Costeans were channel-sampled continuously along the lower part of the south face, with additional samples collected from the upper part of the south face and the upper and lower part of the north face across selected prospective zone. Costean samples were collected at 2.0, 1.0 and 0.5 m lengths depending on the prospectivity assessed by the sampling geologist. Aircore was drilled to blade refusal, which, depending on rock type, is typically near the base of the weathered domain. A hammer was used, at the onsite geologist's discretion, to penetrate hard near-surface material where encountered. Aircore assay samples were collected at either 1.0 or 2.0 m intervals using a cone splitter attached to the drill-rig. Costean and aircore samples between 0.5 and 3 kg were collected for laboratory analysis. Sample information, including lithological descriptions, were collected at the time of sampling. All aircore drill samples have been archived. Costean and aircore drill samples were submitted to Northern Australia Laboratory (NAL) in Pine Creek, Northern Territory for assay.
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.). 	 Costeans were dug to about 2 m deep exposing at least 1 m of weathered bedrock. Drilling was carried out by Australian Mineral and Water Drilling Pty Ltd using a truck-mounted Metzke-Schramm KD150. All AC drilling was from surface with an 86 mm blade bit. A hammer bit was used in places. The drill rig was oriented using a handheld compass and no downhole

Criteria	JORC Code explanation	Commentary
		surveys were taken.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximize sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 The costeans reveal 100% bedrock along the traverse. Channel sampling was undertaken by an experienced geologist with hand tools. AC sample recovery was estimated visually based on volume of material in bags. In general, recoveries were consistently very high. Holes were drilled to blade-refusal and no significant volumes of water were encountered. There is no obvious bias in the sampling.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	 Bedrock and regolith in the costeans have been logged in detail with structural measurements taken of various geological features. Logging of the costeans is quantitative. All costeans have been photographed. All AC chips are logged by the onsite geologist at 1 m intervals. Chip trays are photographed and retained. Logging fields include lithology, colour, grainsize, texture, vein abundance, sulphide type and abundance, alteration, recovery and moisture.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Costeans were channel-sampled continuously along the lower part of the south face, with additional samples collected from the upper part of the south face and the upper and lower part of the north face across the main prospective zone. Costean samples were collected at 2.0, 1.0 and 0.5 m lengths depending on the prospectivity assessed by the sampling geologist. AC assay samples were collected at either 1.0 or 2.0 m intervals using a cone splitter attached to the drill-rig. Costean and AC samples between 0.5 and 3 kg were collected for laboratory analysis. The AC sample splitter was cleaned with compressed air at the end of each rod (3 m) to reduce sample contamination. Individual samples were placed in individual sample bags and clearly identified prior to submission to the laboratory for assay. Sampling of highly prospective zones was also undertaken across other costean faces to measure gold variability.
Quality of assay data	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered 	 PNX inserted QAQC samples (blanks, duplicates, standards) at regular intervals for the costean and AC samples.

Criteria	JORC Code explanation	Commentary
and laboratory tests	 partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 PNX costean and AC samples were submitted to Northern Australia Laboratory (NAL) in Pine Creek, Northern Territory for assay. Samples were dried, roll-crushed to -2mm, split to 1kg and pulverized to -100µm in a Keegormill. Samples were assayed for gold only. NAL used the gold assay method FA40 (Fire Assay 40 g) with AAS finish. Detection limits are 0.01 ppm. Repeat gold assays (laboratory duplicate obtained from a new 40 g sample charge) were completed on numerous selected samples. Results given in the main text of the Announcement are the average of results where repeat assays were taken. All results have been rounded to two decimal places in ppm, except samples exceeding 10 ppm gold which have been rounded to one decimal place. All significant results are shown in Tables 1 and 2 of the Announcement. The remaining pulp sample has been kept for future reference/assay.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Significant results in this Report have been verified by PNX's Exploration Manager. No resampling has been completed. No external laboratory assays (umpire samples) have been carried out. All PNX costean and AC data (field and assay) are received as MS Excel spreadsheets and are compiled for eventual storage in an MS Access database. All historic soil and drill data have been transcribed from statutory reports obtained from the Northern Territory Mines Department via their publicly available GEMIS system. Some of the drill collar and soil data are available on the Northern Territory Geological Survey's STRIKE system. It is not known whether any adjustments were made to the historic data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Costean start-points and AC collar locations are quoted using the GDA94 datum (Zone 52). Costean start-points and AC collars were located using a handheld GPS and will be surveyed using a DGPS in due course. Drill holes were oriented using a handheld compass. No downhole surveys were taken.

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 AC drilling at C6 was generally spaced 20 m apart and drilled at 60° to the east. PNX's costean and AC drilling are reconnaissance in nature and are not considered sufficient to establish the degree of geological and grade continuity appropriate for a Mineral Resource and Ore Reserve estimation. Sample compositing has not been applied.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 PNX costeans and AC drillholes cut across lithological boundaries, significant quartz veins and numerous geological structures at approximate right angles and thus provide near true-width measurements. It is not known whether the relationship between the drilling orientation and the orientation of mineralised structures has introduced sampling bias.
Sample security	The measures taken to ensure sample security.	 PNX costean and AC samples were placed inside individual calico bags at time of collection and transported by PNX personnel to NAL upon completion of the sampling program.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	No audits have been carried out at this point.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Announcement covers granted Exploration Licences EL31839 (100% owned by PNX Metals Ltd), and EL10012 (90% owned by PNX Metals Ltd and 10% owned by NT Mining Operations Ltd (subsidiary of Agnico Eagle Australia)) (see ASX 14 August 2014 and 12 December 2016). All Exploration Leases are situated within Bridge Creek (Perpetual Pastoral Lease 1213, NT Portion 6299) and Mt Ringwood Stations (Perpetual Pastoral Lease 1212, NT Portion 6298). PNX has permission from the pastoral lease owners to access the areas. There are no formal landowner access agreements in place.

Criteria	JORC Code explanation	Commentary
		 A Native Title claim has been recently lodged over the Bridge Creek Pastoral Lease (NTD6/2023). There are no Native Title claims over Mount Ringwood Station. The tenements are in good standing and no known impediments exist.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Significant exploration in the area has been completed by four companies: WR Grace Australia (1980-1985) WMC Resources (1985-1990) Acacia Resources (1995–1999) Territory Uranium Corporation (2007-2012) Historic company reports with the data referenced in this Announcement are publicly available via the Northern Territory Mines Department's GEMIS system. The Goodall Gold Deposit was discovered by WG Grace Australia and delineated and mined by Western Mining Resources. No other deposits are known in the immediate area, though there are many gold deposits within the Pine Creek Orogen.
Geology	Deposit type, geological setting and style of mineralisation.	 The area described in the Announcement is within the Central Domain of the Pine Creek Orogen, Northern Territory, Australia. The geology comprises Paleoproterozoic metasediments. At the C6 prospect, costeans and AC drilling reveal packages of greywacke, siltstone and mudstone of low metamorphic grade. The stratigraphy in the project area, as shown in geological maps published by government geological surveys, is exclusively Burrell Creek Formation, which is part of the Finniss River Group. There is less than 50% outcrop in the project area. The Burrell Creek Formation has been moderately to tightly folded along multiple north-trending axes and metamorphosed to sub- to lower greenschist facies within the project area. Geological relationships measured in the costeans indicate that the costeans are positioned on the western limb of a north-plunging anticline. All beds are moderately west dipping.

Criteria	JORC Code explanation	Commentary
Drill hole Information	 A summary of all information material to the understanding of the axploration results including a tabulation of the following information 	 Gold mineralisation is found in many stratigraphic units in the Pine Creek Orogen, including the Burrell Creek Formation. Gold mineralisation is commonly associated with anticline fold hinges. Gold is either in or near quartz veins or along sedimentary beds within these fold axes. Other geometries of gold-bearing quartz veins, such as the Tally Ho lodes at Fountain Head, are also known. Gold-bearing quartz veins and associated sericite-chlorite-pyrite alteration overprint both the peak metamorphic minerals that define axial planar cleavages and the metamorphic minerals formed in the contact aureole around large granite bodies. The specific setting of the gold mineralisation at the C6 prospect has not been established, though early evidence suggests it is related to high-sulphidation quartz veins, similar to many other gold deposits in the Pine Creek area. The relevant information is provided in Table 2 of the Announcement.
mormation	 exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 No weighting methods or other aggregation methods have been applied.

Criteria	JORC Code explanation	Commentary
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 All significant intersections in the Announcement are quoted as across costean widths, which is also true width. It is assumed that widths quoted for the AC drilling approximate true width.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Detailed maps are presented within the body of this Announcement.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	All matters of importance have been included.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	• All relevant available information has been included.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Details of planned work are presented in the body this Announcement.